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AIRBORNE REMOTE SENSING USED TO ESTIMATE PERCENT

CANOPY COVER AND TO EXTRACT CANOPY TEMPERATURE

FROM SCENE TEMPERATURE IN COTTON

W. R. DeTar,  J. V. Penner

ABSTRACT. The goal of this research was to separate the soil and plant temperatures and create an image map of plant water
stress. Data from hyperspectral imagery (HSI) and thermal infrared (TIR) sensors were collected using an airborne platform
over three seasons, involving three different varieties of Acala cotton, four different fields, and a total of ten flights. The first
step was to measure the percent canopy cover, which ranged from 30% to 100%. Using linear multiple regression, percent
canopy cover, measured manually in the field, was found to be closely related to several new vegetation indices, taken from
among 60 narrow bands in the wavelength range of 429 to 1010 nm. The highest coefficient of determination (r2) for a
three-parameter hyperspectral model was 0.931, and it included the wavelengths 676, 753, and 773 nm. A two-parameter
model using 676 and 966 nm worked especially well. A weighted version of the normalized difference vegetation index (NDVI)
was found to relate well to percent canopy cover, but not quite as well as some non-normalized band combinations. Using
the two-parameter model, the percent canopy cover was calculated for every part of two experimental fields that had
originally been set up to compare the yields from water-stressed versus unstressed treatments. The mean value for scene
temperature for each plot was plotted against the mean value of percent canopy cover for each plot. Using analysis of
covariance, the scene temperatures were projected to what they would be at 100% canopy. The procedure showed that the
canopy for the water-stressed treatment had a significantly higher temperature than the unstressed control, which means that
it was indeed stressed. Using analysis of covariance, the green-red difference was found to be an indicator of both percent
canopy cover and plant water stress. An image map was produced showing the canopy temperature at every pixel in the field,
with a spatial resolution of about 1.0 m. The main finding was that the plant water stress in Acala cotton could be detected
with airborne remote sensing under the conditions of partial canopy over a dry soil surface. These results should be useful
in selecting filters for multispectral cameras and for selecting the wavebands for HSI sensors when attempting to measure
degree of vegetative cover. A straightforward method is presented for separating canopy temperature from soil temperature,
and a procedure is given for producing a detailed map of canopy temperature in the field.

Keywords. Analysis of covariance, Band selection, Multiple regression, Plant water stress, Vegetation indices.

ue to the spatial and temporal variability of
growth-related crop characteristics, in-field mea-
surements at the number of discrete points neces-
sary to provide accuracy and confidence are often

cost prohibitive. Remote sensing can provide the spatial dis-
tribution necessary with image maps showing properties of
every part of every field (Maas, 1998; Moran et al., 1997;
Dawson, 1997). Crop yield can be greatly affected by plant
water stress. However, it is important to apply stress-reliev-
ing irrigation water in a judicious manner to avoid environ-
mental problems and to keep the cost down on a limited and
expensive resource. The development of the infrared ther-
mometer made it possible to measure canopy temperature
without physically touching the plant (Ehrler at al., 1978),
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and the temperature of the plant canopy can be a measure of
plant water stress. Many different types of vegetation indices
have been used to empirically relate remotely sensed data to
crop properties (Thenkabail et al., 2000; Thorp et al., 2004).
Moran et al. (1989) showed that water stress on alfalfa caused
a reduction in the spectral reflectance in both the near-in-
frared (NIR) and red regions. Jackson et al. (1983) used vari-
ous combinations of bands, and concluded that water stress
on wheat could not be detected until there was a stress-in-
duced retardation in growth.

The relationship between water stress and canopy temper-
ature for cotton and corn was studied by Wanjura and Up-
church (2000). Jackson et al. (1981) discussed the crop water
stress index (CWSI) and the no-stress baseline in their work
with canopy temperature as a measure of stress. Clarke
(1997) used the water deficit index (WDI) from Moran et al.
(1994) to show temperature rise and stress in melons under
partial canopy. They noted that there was no precise remotely
sensed equivalent to percent canopy cover. Goel et al. (2003)
used multiple regression to select narrow bands from hyper-
spectral imagery (HSI) data to predict several biophysical
properties of corn, but did not include percent canopy cover.
Bajwa et al. (2004) used principal component analysis and ar-
tificial neural network based models to select the best 20
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bands for soybean canopy cover. The effect of developing
moisture stress was shown by Maas et al. (1999) to be a rise
in canopy temperature. They used airborne thermal infrared
(TIR) data from daily flights over drip-irrigated cotton plots
suddenly deprived of water. Temperatures in the stressed
plots rose by as much as 10°C above those in unstressed plots.

The primary goal of this study was to use airborne hyper-
spectral and TIR data to provide detailed images of plant wa-
ter stress in cotton fields under partial canopy. Under partial
canopy conditions, however, the high temperature of the ex-
posed soil can have an overwhelming influence over the aver-
age (scene) temperature. The first step was to get a measure
of the degree of crop canopy cover, and then separate the can-
opy temperature from the soil temperature.

MATERIALS AND METHODS
EXPERIMENTAL FIELDS

The site for this study was the Shafter Research and Exten-
sion Center of the University of California, which is located
near the southern end of the San Joaquin Valley, at 35° 31′ N,
119° 17′ W, and 109 m above sea level. Annual average pre-
cipitation is 167 mm, with little rainfall from May to Septem-
ber. All the soils on the station are mapped as a Wasco sandy
loam (coarse-loamy, mixed, non-acid, thermic Typic Tor-
riothents). In 2001, Acala NemX cotton was grown in field
42, which is a 2.6 ha field, 85 m wide × 302 m long (fig. 1).
Plant rows were 0.76 m apart and ran the length of the field,
which is in the east-west direction. Irrigation was done with
a subsurface drip system, with a dripper line buried 0.26 m
below grade in every plant row and running the full length of
the field. Water was applied on a daily basis. The field was
divided into four narrow strips, each 21.3 m wide. Each of
these strip plots was on a separate irrigation circuit, and they
were labeled A, B, C, and D from south to north. Plots B and
D were irrigated normally, applying the average ET required
(see DeTar, 2004) based on a system efficiency of 90%.

In order to simulate a furrow- or sprinkler-irrigated heavi-
er soil where an irrigation would be required about once ev-
ery four weeks, the A and C plots were deficit-irrigated by
about 25% starting 25 June 2001, applying an average of 1.9
mm d−1 less than the depth normally required. The average
moisture available in the root zone was about 127 mm at field
capacity. Allen et al. (1998) gave the threshold point for start
of water stress as 56% depletion when the normal crop ET is
7.1 mm d−1. The plan was to reach this point at 127*0.56/
1.9 = 37 days after initiation, which would be 1 August.
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Figure 1. Plot plan of the four fields in the study: (a) orientation and rela-
tive location of three of the fields studied, and (b) field 21, which is located
in a separate area approximately 1 km north of (a).

In 2002, field 42 and an adjacent field, field 41, were both
planted to Acala PhytoGen-72 cotton. Field 41 had the same
dimensions, layout, and irrigation system as field 42, but for
2002, the B and D plots were deficit-irrigated starting on
27 June 2002, and the A and C plots were irrigated normally.

In 2003, field 21, a 0.97 ha plot with a somewhat finer-tex-
tured soil than most of the Research Center, was planted to
Acala Maxxa cotton. The field dimensions were 87 × 110 m,
with 1.0 m spacing between the plant rows, which ran in the
east-west direction. There were 12 buffer rows on the north
side of the field, the direction of prevailing winds, and four
buffer rows on the south side. The remaining area was divided
into 16 plots, separated by 2 m wide walkways, with each plot
measuring 21 × 22 m. Half the plots were water stressed; half
were unstressed. The field was furrow-irrigated normally on
two-week intervals, with about 115 mm being applied each
irrigation. To ensure significant water stress at the time of a
flight, two weeks before the flight, the stressed plots were
given only half the normal depth of water. Leaf water poten-
tial (Hake et al., 1996) was measured before the flights, using
two leaves from each of the eight main plots.

For 2002 and 2003, field 41A, a 0.7 ha plot, was set up to
determine the optimum level of water application to Acala
Maxxa and Acala PhytoGen-72 cotton, using six different ap-
plication rates. This field has the same coarse-textured soil as
in fields 41 and 42. It also had the same row spacing, but the
rows ran in the north-south direction. The irrigation system
was subsurface drip. Application rates for the treatments
ranged from 33% of normal to 144% of normal. The surface
of the soil was dry in all four fields at the time of the flights.

EQUIPMENT AND GROUND TRUTHING FOR FLIGHTS

Over the three years of tests, ten data acquisition flights
were made during the period before full canopy was reached.
Flight dates and times are given in table 1. The light airplane
(Cessna 206/210), pilot, camera operator, and pre-processing
were all provided by Opto-Knowledge Systems, Inc. (OKSI)
of Torrance, California. OKSI also provided a hyperspectral
(HSI) camera, called the Airborne Visible-Near-Infrared
(AVNIR) system, which had a spatial resolution of 0.8 m
from an altitude of 1500 m, with 60 bands of reflectance data
in the range of 429 to 1010 nm and a spectral resolution of
10 nm. Also included from all flights were data from a set of
cameras provided by the USDA-ARS at Shafter called the
Shafter Airborne Multispectral (MSI) Remote Sensing Sys-
tem (SAMRSS), developed by Maas et al. (1999). This pack-
age included three multispectral Dalsa digital cameras
(Dalsa, Inc., Waterloo, Ont.), one for the green range of 545
to 555 nm, one for the red range of 675 to 685 nm, and one
near-infrared (NIR) camera for the range 830 to 870 nm, all
with a spatial resolution of 1 m. Also included in the package
was a thermal infrared (TIR) camera (Indigo Merlin thermal
imager from Indigo Systems, Santa Barbara, Cal.) with a
range of 8000 to 14,000 nm and a spatial resolution of 2.4 m,
and a video camera. Square white targets, 1.2 m on a side,
were placed at the corners of every field for georeferencing.

On flight days, three 8 × 8 m fabric calibration panels
(Tracor Aerospace, Inc., Austin, Texas) were spread out on
the unpaved road at the east end of field 41. As near to flight
time as possible, ground truthing was done with hand-held in-
frared thermometers, obtaining temperatures of unpaved
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Table 1. Flight dates and times.
Flight
No. Flight Date

Flight Time
(PST)[a] Fields

1 20 June 2001 13:00[b] 42
2 5 July 2001 13:00[b] 42
3 11 July 2001 13:00[b] 42
4 18 June 2002 14:37 41, 42, 41A
5 25 June 2002 14:00 41, 42
6 1 July 2002 14:26 41, 42
7 8 July 2002 14:34 41, 42, 41A
8 9 July 2003 12:55 21, 41A
9 28 July 2003 14:44 21

10 20 August 2003 12:44 41A
[a] Solar noon is about 13:00 PDT.
[b] Approximate flight time.

roads, fallowed fields, smooth bare-soil walkways, stressed
and unstressed canopies, calibration panels, a pond, un-
planted but furrowed and cultivated soil at the east end of
field 42, and nearby alfalfa fields. Air temperature and hu-
midity (dry bulb and wet bulb) were measured above the can-
opy in the field and in areas around the field with a
battery-aspirated  psychrometer. Spectral radiometer read-
ings of the calibration panels were taken in 2001 and 2002,
using an LI-1800 spectroradiometer (Li-Cor, Inc., Lincoln,
Neb.) and in 2003 they were taken with an ASD portable Vis/
NIR reflectance spectrometer (Analytical Spectral Devices,
Boulder, Colo.). All this data, along with data from the Re-
search Center’s weather station, was sent to OKSI within 3
h after the flight, to help with the pre-processing. Normal
turnaround time for the processing was 24 h.

DATA ANALYSIS
Using ENVI, an image processing software (Research

Systems, Inc., Boulder, Colo.), images of the individual
fields were extracted from larger images acquired during the
flights and exported as ASCII files for further processing. Ex-
cel was used to convert these files to a format useable by Co-
Plot v3.0 (CoHort Software, Monterey, Cal.) and by ArcView
GIS v3.3 (ESRI, Redlands, Cal.). To extract detailed data for
this part of the study, the HSI reflectance data for each field
were loaded into ArcView, and a line tool was used to demar-
cate the boundary between irrigation treatments. Each of the
irrigation plots in fields 41, 42, and 21 was then subdivided
into smaller, equal-sized grid areas. The plots in field 41A
were already rather small and were treated as grid areas.
There were walkways in all fields, similar to the ones in field
21. Small areas of interest, measuring 4 × 4 m, were then es-
tablished along the walkway, one in every grid area in fields
21 and 41A and in three test areas each in fields 41 and 42.
For each flight date, the average fraction of canopy cover was
estimated for each area of interest by measuring the width of
the canopy with a meter stick and dividing by the row spac-
ing, as reported by Maas (1998) and Wiegand et al. (1991).
With the field data files still in ArcView, each of the areas of
interest was selected using a select feature tool. The statisti-
cal average for the spectral response pattern was produced for
each small area of interest. These data were entered into Ex-
cel with one area of interest to each row. Data from every
flight were added to this file, and this area-of-interest file
eventually grew to 300 rows of data, 60 columns wide. When
the percent canopy cover (the dependent variable) was added
into column 61, this file became the primary source for multi-
ple regression analysis.

HSI data for the grid areas were also extracted and aver-
aged in a manner similar to that for the small areas of interest,
producing one line of averaged data for each grid area. Typi-
cal spectral response patterns were developed from this aver-
aged grid-area file. Mean values of TIR scene temperatures
for each grid area were also obtained for every flight using the
select feature tool in ArcView.

MULTIPLE LINEAR REGRESSION

In order to find the combination of bands in the area-of-in-
terest files that best correlated to the percent canopy cover,
the files were imported into CoPlot, which accesses another
program called CoStat to do the analysis. The percent canopy
cover was considered the dependent variable, and the various
band reflectances were the independent variables. An auto-
matic procedure is available in which, after the number of
bands to include in each multiple regression has been chosen,
the program looks at every possible combination, returning
only the r2 values. The number of regressions required for
pairs of bands out of 60 available is 60*59/(1*2) = 1770. To
find the best three-band combinations required
60*59*58/(1*2*3) = 34,220 regressions. Four-band com-
binations required 487,635 regressions. The program auto-
matically ranks and stores the results of the 100 best
combinations (models).

The procedure above was also done for each individual
flight. In looking at the best models for each flight, it was
found to be nearly impossible to find a set of bands that
worked consistently well on all flights. Occasionally, the
same set of bands, from somewhere in the top 100 r2 values
of each flight, was found to work well in two or three flights,
but even then the equations were dissimilar. It was felt that
one way to find a consistent model for all the flights was to
put all the data together in one file before regressing.

Multiple regression produces equations of the form:

 21 ** XcXbaG ++=  (1)

where G is the percent canopy cover, and X1 and X2 are the
reflectances for two bands in this two-parameter model.
Equation 1 can also be written as:

 )*(* 21 XmXbaG ++=  (2)

where m = c/b, and the expression in parentheses is a type of
vegetation index, which can be expressed as:

 21 * XmXI +=  (3)

Substituting equation 3 into equation 2 produces a simple
linear equation:

 IbaG *+=  (4)

A similar vegetation index was also developed for three-
and four-parameter models.

Analysis of covariance was used in the last part of this
work to separate the canopy temperature from the soil tem-
perature. Analysis of covariance is a standard statistical pro-
cedure normally used to remove an effect in the field that is
measured but not controlled. It creates a set of parallel regres-
sion lines, sometimes called a family of curves, through the
data, and it allows the data to be adjusted to one level of the
uncontrolled variable so that normal analysis of variance pro-
cedures can be applied.
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Table 2. Bands with the 20 highest r2 values for the equations relating percent canopy cover to wavelength,
for one-, two-, three-, and four-parameter equations, using merged data from ten flights.

One Parameter Two Parameters Three Parameters Four Parameters

Rank Band (nm) r2 Bands (nm) r2 Bands (nm) r2 Bands (nm) r2

1 666 0.8023 763, 686 0.9192 773, 753, 676 0.9310 773, 753, 676, 531 0.9328
2 676 0.7947 966, 686 0.9189 773, 753, 686 0.9305 773, 753, 676, 521 0.9327
3 657 0.7888 966, 676 0.9187 773, 753, 657 0.9301 811, 773, 753, 676 0.9326
4 686 0.7731 763, 637 0.9186 928, 918, 676 0.9290 773, 753, 695, 686 0.9325
5 647 0.7583 870, 686 0.9185 773, 753, 647 0.9289 776, 753, 695, 676 0.9325
6 637 0.7553 860, 686 0.9184 928, 918, 686 0.9289 773, 753, 676, 434 0.9324
7 627 0.7510 840, 686 0.9184 928, 918, 618 0.9288 773, 753, 676, 637 0.9324
8 618 0.7472 773, 686 0.9184 928, 870, 686 0.9284 773, 753, 676, 540 0.9322
9 608 0.7042 763, 657 0.9182 928, 918, 608 0.9284 773, 753, 657, 521 0.9321

10 598 0.7018 966, 666 0.9182 928, 918, 647 0.9282 773, 753, 686, 521 0.9321
11 937 0.6670 763, 666 0.9182 773, 753, 618 0.9281 773, 753, 676, 502 0.9321
12 589 0.6619 850, 686 0.9182 928, 918, 657 0.9281 773, 763, 753, 676 0.9320
13 773 0.6611 870, 676 0.9181 928, 918, 666 0.9281 773, 753, 676, 560 0.9320
14 782 0.6609 763, 647 0.9181 773, 753, 666 0.9280 773, 753, 676, 666 0.9320
15 957 0.6607 763, 608 0.9181 773, 753, 627 0.9280 773, 753, 686, 637 0.9320
16 947 0.6569 870, 657 0.9180 928, 918, 637 0.9279 773, 753, 676, 443 0.9318
17 753 0.6557 831, 686 0.9179 928, 918, 627 0.9278 773, 763, 753, 686 0.9318
18 802 0.6554 918, 686 0.9178 928, 870, 676 0.9276 773, 753, 676, 579 0.9318
19 840 0.6540 918, 676 0.9178 928, 918, 598 0.9273 773, 753, 676, 550 0.9318
20 502 0.6536 966, 657 0.9177 928, 870, 618 0.9272 937, 773, 753, 676 0.9318

Figure 2. Coefficient of determination for percent canopy cover as a func-
tion of individual bands, for merged data from ten flights.

RESULTS AND DISCUSSION
BAND SELECTION AND VEGETATION INDICES

The percent canopy cover was found to be related to sever-
al different combinations of bands. The models with the 20
highest r2 for one band, two bands, three bands, and four
bands are given in table 2. As seen in figure 2, the r2 for the
single-band models in the red range (598 to 686 nm) are much
higher than those in the NIR range (744 to 957 nm), suggest-
ing that more weight should be given to the red bands. The
666 nm band is apparently much more important than the 686
nm band. There is a large range of NIR wavelengths all with
about the same degree of correlation, r2 > 0.62. At the 502 nm
band, the r2 is just as high as in the NIR range. The low r2 val-
ue at 705 nm is close to the point where the spectral response
patterns for bare soil and vegetation cross, as seen in figure
3, and so they have equal reflectance. The other low-correla-
tion area is at the green bump, 531 to 560 nm.

Figure 3. Spectral response patterns for bare soil where plants were re-
moved from the east end of field 42 and for full canopy plants at the west
end of field 41 on 1 July 2002.

The r2 values for two-band models were generally very
good, with all of the top 100 in the range of 0.9159 to 0.9192.
In every case, one of the two terms was from the red range.
In 99 out of 100 cases, the other term was from either the NIR
plateau or the upper end of the red edge. The lone exception
consisted of the bands at 598 and 531 nm, ranked 76th. The
966 nm band worked well in combination with any band be-
tween 618 and 686 nm. Increasing the number of parameters
(bands) in the regression analysis generally increased the r2

value, although much more so in going from one band to two
bands than from two bands to three bands. Going from three
bands to four bands provided little improvement. In every
case in the top 20 of the three-band models, each of the terms
shown in table 2 contributed significantly (p < 0.001) to the
r2 value. There was little difference in the value of r2 for the
top rank (0.9310) and the 100th rank (0.9228) for the three-
band models. In 99 out of 100 cases, one of the three terms
was from the red range, and the band that appeared most
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Figure 4. Scatter diagram for observed percent canopy cover vs. the two-
band vegetation index for model 8 (I = R966 − 5.273*R676). RMSE =
5.74%. R966 and R676 are the reflectances at 966 and 676 nm, respectively.

Figure 5.Scatter diagram for observed percent canopy cover vs. the three-
band vegetation index for model 11 (I = R773 − 0.937*R753 − 0.921*R676).
RMSE = 5.29%.

Table 3. Regression equations for percent canopy cover models with the five highest r2 in each category.

Model

Category
(No. of

Parameters) Rank Equation r2
RMSE

(%)

1 1 1 G = 108.3 − 619.9*R666 0.8023 8.94
2 1 2 G = 107.5 − 603.9*R676 0.7947 9.12
3 1 3 G = 111.0 − 645.2*R657 0.7888 9.25
4 1 4 G = 110.9 − 607.8*R686 0.7731 9.59
5 1 5 G = 113.9 − 670.6*R647 0.7583 9.89

6 2 1 G = 71.1 + 55.3*(R763 − 7.74*R686) 0.9192 5.72
7 2 2 G = 64.7 + 89.4*(R966 − 4.96*R686) 0.9189 5.73
8 2 3 G = 64.5 + 84.3*(R966 − 5.27*R676) 0.9187 5.74
9 2 4 G = 73.8 + 57.5*(R763 − 8.43*R637) 0.9186 5.74

10 2 5 G = 68.4 + 67.5*(R870 − 6.41*R686) 0.9185 5.74

11 3 1 G = 73.5 + 472.2*(R773 − 0.937*R753 − 0.921*R676) 0.9310 5.29
12 3 2 G = 73.5 + 440.8*(R773 − 0.920*R753 − 0.978*R686) 0.9305 5.30
13 3 3 G = 75.0 + 441.7*(R773 − 0.926*R753 − 1.043*R657) 0.9301 5.32
14 3 4 G = 72.0 − 186.8*(R928 − 1.249*R918 + 2.396*R676) 0.9290 5.36
15 3 5 G = 74.5 + 435.1*(R773 − 0.914*R753 − 1.086*R647) 0.9289 5.37

16 4 1 G = 71.1 + 493.9*(R773 − 0.986*R753 − 1.245*R676 + 0.654*R531) 0.9328 5.22
17 4 2 G = 72.6 + 480.9*(R773 − 0.974*R753 − 1.320*R676 + 0.735*R521) 0.9327 5.22
18 4 3 G = 70.8 + 536.0*(R773 − 0.766*R753 − 0.799*R676 − 0.161*R811) 0.9326 5.23
19 4 4 G = 70.7 + 468.6*(R773 − 0.950*R753 − 1.619*R686 + 0.729*R695) 0.9325 5.23
20 4 5 G = 71.1 + 513.7*(R773 − 0.967*R753 − 1.365*R676 + 0.537*R695) 0.9325 5.23

frequently was at 686 nm. The model with the highest r2 in
the three-band category contained 676, 753, and 773 nm, and
these same terms showed up in the best four-band model. All
100 of the top four-band models included 753 nm and a red
term, mostly 676 and 686 nm. In 95 out of 100 cases, 773 nm
was also in the model. The range in r2 values for the four-band
category was 0.9310 to 0.9328. In the top 20, all four terms
contributed significantly to the r2 value.It is important to no-
tice that there are many different combinations that work
well. As suggested by Lillesand and Kiefer (1999), a unique
solution would only be possible under ideal conditions.

Figure 4, which includes 300 points from ten flights,
shows how well the data from one of the best two-band mod-
els (model 8 in table 3) fit the linear regression line. The x-
axis for this plot was developed using equations 1, 2, and 3,
and the regression line shown comes from equation 4. In this

case, a = 64.6, b = 84.3, c = 444.3, m = −5.273, and the result-
ing r2 = 0.919 and RMSE = 5.74%.

A similar vegetation index was developed for the three-
parameter model, as shown in figure 5 and table 3. In
this case, the three-parameter model had an r2 of 0.931, which
is considerably higher than for the two-parameter model. The
root mean square error (RMSE) for the three-parameter mod-
el was 5.29%, which is much lower than the 5.72% for the
two-parameter  model. By comparing figures 4 and 5, one
may note the difference in scatter around the regression lines.
Table 3 shows the regression equations for the top five r2

rankings in each category of model. The terms in parentheses
are vegetation indices. For the three-parameter model, the
bands at 753 and 773 nm occur in four out of the five top
ranks. They have similar coefficients and opposite signs, in-
dicating a possible importance of the slope of the spectral re-
sponse pattern in that region, which is at the upper end of the
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Figure 6. Scatter diagram for observed percent canopy cover vs. the vege-
tation index for model 21, I = NDVI = (Nir − Red) / (Nir + Red). RMSE =
6.13%.

red edge. Likewise, in both tables 2 and 3, bands at 918 and
928 nm appear together several times, indicating that the
slope in that region might also be important.

The normalized difference vegetation index (NDVI) is
one of the oldest and most common vegetation indices used
in remote sensing (Seidl et al., 2004) and is meant to be an in-
dicator of crop cover and biomass: NDVI = (N−R)/(N+R),
where N is NIR reflectance, and R is the red reflectance
(Rouse et al., 1974; Vinogradov, 1977). In order to match the
multispectral  wavelengths used in the SAMRSS package, we
used the average reflectance of 686 and 676 nm as the R val-
ue, and the average of 831 nm through 870 nm for the N val-
ue. Figure 6 is a scatter diagram showing how our observed
values of percent canopy cover correspond to the NDVI. The
linear fit is not quite as good as with the two-parameter mod-
el. One of the well-known problems with the NDVI is the sat-
uration and insensitivity that occur at the higher levels of
canopy cover (Mutanga and Skidmore, 2004; Carlson and
Ripley, 1997).

WEIGHTED NDVI
From the vegetation indices given for the two-band mod-

els in table 3, one notes that the first term is always in the NIR
region (763 to 966 nm), and the coefficient on the red term
(637 to 686 nm) is always much greater than unity, varying
from 4.96 to 8.43. These are very high weighting factors. This
suggests a modification in the NDVI, which normally has
equal weighting on the NIR and red terms. Using the nonlin-
ear regression program available in CoPlot, the observed per-
cent canopy cover was regressed against the form (N −
w*R)/(N + w*R), where w is a weighting factor. We call this
form WNDVI, for weighted NDVI. The best correlation

Figure 7. Scatter diagram for observed percent canopy cover vs. the vege-
tation index for model 22, I = WNDVI = (Nir − 3.9*Red) / (Nir + 3.9*Red).
RMSE = 5.52%.

occurred with w = 3.9. Figure 7 shows how well this weighted
NDVI corresponds to the observed percent canopy. The r2 of
0.925 and RMSE of 5.52% make it a better fit than the two-
parameter model, but not quite as good as the three-parame-
ter model. Another model comes from the bands used in the
NDVI (i.e., N − v*R), with the best correlation obtained with
v = 8.034, and a resulting r2 = 0.918 and RMSE = 5.76%.
Table 4 shows the regression equations for percent canopy
cover as a function of NDVI and for these new vegetation
indices. All of the two-parameter models in table 2 were
normalized and regressed to find the proper weighting factor,
and the best three models are included in table 4 as models
25, 26, and 27. These three models are all narrow-band ver-
sions of the WNDVI. It appears that the best wavelengths to
use with this weighted and normalized index are very close
to those used with the NDVI.

COVARIANCE

Using equation 4, the percent canopy cover was calculated
for every line of HSI data in the averaged grid area file for the
B and C plots of field 41 for the flight of 1 July 2002. The re-
sult was put in the 61st column. Likewise, the average scene
temperature for each of these same grid areas was determined
using the TIR data files, and the result was put in the 62nd col-
umn. These scene temperatures were then plotted against the
average percent canopy cover in figure 8a. At that time, the
B plots had only been deficit irrigated for five days and had
not yet reached the threshold stress level.Naturally, the great-
er the canopy cover, the cooler the scene temperature, and
analysis of covariance (Steele and Torrie, 1960) showed that
there was indeed a very close linear relationship between the

Table 4. Regression equations for some additional vegetation indices.
Model Vegetation Index (I) Regression Equation r2 RMSE (%)

21 NDVI = (Nir − Red) / (Nir + Red)    G = −32.5 + 136.9 * I 0.9071 6.13
22 WNDVI = (Nir − 3.9Red) / (Nir + 3.9Red) G = 47.9 + 68.9 * I 0.9247 5.52
23 Nir − 8.034Red G = 70.6 + 53.7 * I 0.9180 5.76
24 WNDVI2 = (R966 − 3.3R676) / (R966 + 3.3R676) G = 47.7 + 71.4 * I 0.9182 5.76
25 (R850 − 3.96R686) / (R850 + 3.96R686) G = 48.4 + 69.9 * I 0.9255 5.49
26 (R840 − 4.03R686) / (R840 + 4.03R686) G = 48.7 + 70.0 * I 0.9252 5.50
27 (R831 − 3.94R686) / (R831 + 3.94R686) G = 48.3 + 69.7 * I 0.9254 5.50
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Figure 8. Scene temperature from TIR camera vs. percent canopy cover
as calculated by model 8, G = 64.5 + 84.3*(R966 − 5.273*R676), for field 41
on (a) 1 July 2002 and (b) 8 July 2002 before stress took effect in the B
plots.

two variables, with r2 = 0.962. It also showed that there was
no significant difference between the two treatments at the
5% level. The temperature difference between the two treat-
ments, for the same percent canopy cover, was only 0.13°C,
whereas the least significant difference (LSD05) required was
0.47°C. When the temperature data were projected (ad-
justed) to values corresponding to 100% canopy cover, the re-
sult was the temperature of the canopy alone, separated from
the soil-canopy mixture of temperatures. The canopy temper-
ature of healthy, well-watered cotton plants is usually several
degrees below air temperature, and dependent on the vapor
pressure deficit (VPD) of the air above the canopy. The lower
baseline for the crop water stress index (CWSI), from Idso et
al. (1981), can be used to predict unstressed canopy tempera-
tures. Pinter and Reginato (1982) developed a baseline for
cotton in Arizona. A very similar baseline was developed by
DeTar et al. (2006) in California, with the baseline tempera-
ture given as:

 PTT ab *779.1597.0 −+=  (5)
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Figure 9. Scene temperature from TIR camera vs. percent canopy cover
as calculated by model 8, G = 64.5 + 84.3*(R966 − 5.273*R676), for field 21
on (a) 9 July 2003 before stress was applied and (b) 28 July 2003 after
stress was applied to the stressed treatments. Irrigations were two weeks
prior to flight.

where
Tb = unstressed CWSI baseline temperature (°C)
Ta = temperature of the air above the canopy (°C)
P = vapor pressure deficit (VPD) of the air (kPa).
When projected to 100% canopy cover, as shown in fig-

ure 8a, the average temperature of the canopy alone in the B
and C plots was found to be very close to the theoretical
CWSI baseline temperature of 29.56°C. The B plots were
projected to be 29.73°C, and the C plots were projected to be
29.60°C. The regression equation for the C plots suggests
that if the relationship were linear for the range of 0% to 75%
canopy, there would be a virtual (apparent) temperature of
65.6°C for the bare soil, which is in the range of some of the
soil temperatures actually measured at flight time. The r2 of
0.962 indicated that over 96% of the variability in the scene
temperature was due to the degree of ground cover, and with
an LSD05 of 0.47°C, there was a strong indication that the
canopy temperature was very uniform. Examples of the
covariance procedure are shown for three additional flights
in figures 8b, 9a, and 9b. Figure 8b shows that the procedure
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Table 5. Comparison of eight canopy cover models used in covariance procedure for four flights: baseline error, r2, and projection slope.

Measure Model (name)
Bands
(nm)

1 July 2002
Field 41

8 July 2002
Field 41

9 July 2003
Field 21

28 July 2003
Field 21

RMSE or
Average

Tcu − Tb
[a] 8 966, 676 0.04 −0.08 0.38 −0.01 0.195

7 966, 686 0.55 0.26 0.47 −0.04 0.384
6 763, 686 −1.49 −0.43 0.30 0.16 0.794

11 773, 753, 676 0.00 −0.57 0.51 0.38 0.427
21  (NDVI) Nir, Red −1.57 −0.89 2.84 −1.40 1.822
22  (WNDVI) Nir, Red 0.64 2.45 1.93 −0.01 1.592
24  (WNDVI2) 966, 676 2.09 3.13 2.19 0.02 2.177
23  (Nir − 8Red) Nir, Red −1.50 −0.42 0.23 0.28 0.608

r2 8 966, 676 0.9621 0.9706 0.9208 0.8713 0.9312
7 966, 686 0.9623 0.9712 0.9154 0.8875 0.9341
6 763, 686 0.9613 0.9612 0.9403 0.9014 0.9411

11 773, 753, 676 0.9441 0.8953 0.9673 0.8959 0.9257
21  (NDVI) Nir, Red 0.9729 0.9783 0.9254 0.8477 0.9311
22  (WNDVI) Nir, Red 0.9675 0.9783 0.9406 0.8416 0.9320
24  (WNDVI2) 966, 676 0.9686 0.9773 0.9334 0.8100 0.9222
23  (Nir − 8Red) Nir, Red 0.9612 0.9573 0.9374 0.8945 0.9376

St
[b] 8 966, 676 −0.360 −0.463 −0.253 −0.234

7 966, 686 −0.349 −0.456 −0.243 −0.227
6 763, 686 −0.370 −0.482 −0.254 −0.228

11 773, 753, 676 −0.290 −0.441 −0.244 −0.190
21  (NDVI) Nir, Red −0.460 −0.671 −0.192 −0.329
22  (WNDVI) Nir, Red −0.317 −0.414 −0.203 −0.241
24  (WNDVI2) 966, 676 −0.345 −0.373 −0.199 −0.217
23  (Nir − 8Red) Nir, Red −0.418 −0.455 −0.25 −0.224

[a] Tcu − Tb = error in the baseline temperature, where Tcu is the projected canopy temperature (°C) for the unstressed treatments.
[b] St = slope of the regression equations found with analysis of covariance for mean grid−area temperature as a function of the mean value of the calculated

percent canopy cover.

continued to show no difference in the treatment a week later,
when the stress still had not taken effect in the B plot of
field 41. It also shows again the very high degree of uniformi-
ty in the canopy temperature, with an r2 of 0.971 and an
LSD05 of 0.23°C. Figures 9a and 9b show the covariance
relationship before and after the stress treatment was applied
to field 21 in 2003, with good uniformity of canopy tempera-
ture on 9 July 2003 (r2 = 0.921, LSD05 = 0.42°C) and a little
more variability on 28 July 2003 (r2 = 0.871, LSD05 =
0.48°C).

Some of the models for percent canopy cover worked bet-
ter than others in this procedure. Tables 5 and 6 show how
eight of the models compare by six different measures of per-
formance for four flights. Of critical importance is how well
the canopy temperature was predicted. The difference be-
tween the predicted unstressed canopy temperature and the
CWSI baseline temperature is shown first, with models 7, 8,
and 11 having the lowest average (RMSE) differences; they
had no differences greater than 0.57°C. All the other models
had differences of at least 1.49°C on one flight or another.
The r2 values showed little difference overall, but model 11
had an unusually low value on the flight of 8 July 2002. The
slope (St), which is very important in the projection proce-
dure, can vary considerably from one model to another, and
between flights for the same model, but the slope for model
21 (NDVI) is unusually high, as compared to the other mod-
els, for three of four flights. The apparent soil temperature (y-
intercept) for model 21 also shows up extremely high for one
of the flights, at 91.3°C. The predicted temperature differ-
ence between the stressed and unstressed treatments are all
small (<0.28°C) for the first three flights, as it should be since
stress had not yet been applied. NDVI is known to have prob-

lems with saturation at the upper end of the range of canopy
cover (90% to 100%), and that may introduce a shortened
range on the values for the vegetation index and the predicted
percent canopy cover, which in turn causes the greater slope
and higher intercept. In spite of this problem, the NDVI mod-
el still did well in predicting differences in canopy tempera-
ture; however, it did not do well in predicting the unstressed
baseline temperature. After the stress was applied, differ-
ences varied from 1.51°C to 1.78°C for seven of the eight
models; however, model 11 had a difference of 1.97°C,
which made it an outlier two standard deviations above the
average.

The F-test results in table 6 show that none of the tempera-
ture differences were significant at the 5% level for the first
three flights, but they were all significant on the fourth flight.
This means that the covariance procedure, for all eight mod-
els, did indeed indicate significant water stress when there
was supposed to be, and it also showed that there was no wa-
ter stress before the treatment was applied. By all the mea-
sures, models 7 and 8 had the fewest anomalies, and model
8 (two-band, using 966 and 676 nm) was chosen for the exam-
ple because it came closest to predicting the CWSI baseline
temperature.

As further confirmation of the procedure for predicting
differences in canopy temperatures, the hand-held infrared
thermometer  was used on small areas just west of the walk-
ways for all plots in field 21 during a 40 min time period close
to the flight time on 28 July 2003. The stressed plots averaged
31.35°C and the unstressed plots 29.77°C, for a difference of
1.58°C. The least significant difference, at 5%, was 1.41°C.
Leaf water potential, measured four days before the flight,
averaged −1.49 MPa for the unstressed plots and
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Table 6. Comparison of eight canopy cover models used in covariance procedure
for four flights: soil temperature, treatment temperature difference, and F-test.

Measure Model (name)
Bands
(nm)

1 July 2002
Field 41

8 July 2002
Field 41

9 July 2003
Field 21

28 July 2003
Field 21

Y0
[a] 8 966, 676 65.6 71.2 54.1 53.9

7 966, 686 65.0 70.7 53.7 53.2
6 763, 686 65.1 72.6 54.2 53.5

11 773, 753, 676 58.6 68.4 53.3 49.9
21  (NDVI) Nir, Red 74.0 91.3 50.4 62.0
22  (WNDVI) Nir, Red 61.9 69.0 50.6 54.7
24  (WNDVI2) 966, 676 66.2 65.4 50.5 52.3
23  (Nir − 8Red) Nir, Red 69.9 70.0 54.4 53.2

Tcs − Tcu
[b] 8 966, 676 0.13 0.06 0.19 1.70

7 966, 686 0.16 0.07 0.21 1.78
6 763, 686 0.15 0.04 0.27 1.72

11 773, 753, 676 0.27 0.10 0.21 1.97
21  (NDVI) Nir, Red 0.19 0.21 0.28 1.55
22  (WNDVI) Nir, Red 0.18 0.21 0.28 1.56
24  (WNDVI2) 966, 676 0.19 0.22 0.21 1.51
23  (Nir − 8Red) Nir, Red 0.15 0.07 0.25 1.70

F-test[c] 8 966, 676 0.31 0.08 0.86 45.4
7 966, 686 0.52 0.30 0.93 58.7
6 763, 686 0.42 0.13 2.22 61.5

11 773, 753, 676 1.14 0.16 2.27 77.3
21  (NDVI) Nir, Red 1.15 4.14 1.77 30.4
22  (WNDVI) Nir, Red 0.83 3.85 2.51 29.7
24  (WNDVI2) 966, 676 0.78 4.40 1.22 22.8
23  (Nir − 8Red) Nir, Red 0.28 0.21 1.80 53.7

[a] Y0 is the y-intercept for the unstressed regression equation and the apparent temperature (°C) for bare soil.
[b] Tcs − Tcu is the temperature difference between stressed and unstressed treatments.
[c] For a significant difference between stressed and unstressed treatments, F05 > 4.45.

Figure 10. High-definition stress image (HDSI) of field 21 on 28 July 2003,
showing the temperature rise above the CWSI baseline, in °C, with 1.0 m
spatial resolution.

−1.76 MPa for the stressed plots. The critical level for sched-
uling an irrigation of cotton at this stage of growth is given
by Hake et al. (1996) as −1.8 MPa.

HIGH-DEFINITION STRESS IMAGE (HDSI)
The image map in figure 10, which is for the flight of 28

July 2003 over field 21, was developed by the following pro-
cedure. First, every point in figure 9b was projected to the
value it would have had at 100% canopy cover, using the fol-
lowing equation:

 )100(* GSTT tgc −+=  (6)

where
Tg = average TIR temperature for the grid area (°C)
Tc = adjusted TIR temperature (°C)
St = slope of the covariance regression lines, which in

this case was −0.2335.
The adjusted TIR value (Tc), which is also the canopy tem-

perature, was then added to the averaged grid-area data files
as column 63. The green-red vegetation index (GRVI), which
is the difference in reflectance of the green (550 nm) and red
(average of 676 and 686 nm) bands, was found by analysis of
covariance to be closely related to stress and percent canopy
cover, as seen in figure 11. The GRVI was adjusted to 100%
canopy cover in a manner similar to that for TIR, using an
equation similar to equation 6:

 )100(* GSII ggga −+=  (7)

where
Ig = GRVI
Iga = adjusted GRVI
Sg = slope of the covariance regression lines, which in this

case was 0.001201.
The GRVI and the adjusted GRVI were added to the aver-

aged grid area data file as columns 64 and 65, respectively.
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Figure 11. GRVI (green minus red) vs. percent canopy cover as calculated
by model 8, G = 64.5 + 84.3*(R966 − 5.273*R676), for field 21 on 28 July
2003 (r2 = 0.9198 and LSD05 = 0.0023).

Tc was then regressed on Iga, with the resulting equation:

 gac IT *5.23602.46 −=  (8)

r2 = 0.741 and RMSE = 0.18°C
This relationship is also shown in figure 12.

Next, using equation 4, the percent canopy (G) was calcu-
lated for every pixel in the ROI data file (over 8300 rows of
data in Excel) for field 21. Columns were added for GRVI and
the adjusted GRVI. Using equation 8, Tc was calculated for
every pixel. The CWSI baseline canopy temperature (Tb
from eq. 5) of 30.55°C was then subtracted from the Tc values
to produce the temperature rise (Tr), which was plotted using
ArcView. It was noticed in the image that areas of bare soil
around the outside edge of the field had unusually low tem-
peratures. This was caused by the negative values for canopy
cover when I in equation 4 was less than −0.76. To make these
temperatures more realistic, a nonlinear equation was fitted
to the data in figure 4, so that the function is asymptotic to the
x-axis:

 [ ]( ) 100*2^)*879.19255.0(^11 IeGn +−−−=  (9)

This equation has an r2 = 0.920 and RMSE = 5.66%, which
are improvements over the values for the linear function. The
plot in figure 10 was made with Gn substituted for G in the
ROI data file.

Since plant water stress is proportional to the temperature
rise (Jackson et al., 1981), the plot in figure 10 is an image
map of the degree of stress at every part of the field, with a
fairly sharp image, the spatial resolution being about 1.0 m.
The darker areas of the image represent higher stress. Regina-
to (1983) suggested that a CWSI range of 0.2 to 0.3 was opti-
mum for scheduling irrigation of cotton. This range
corresponds to a temperature rise of 2°C to 3°C above the
baseline for typical VPD values for this region, and according
to Howell et al. (1984), it also corresponds to leaf water po-
tentials of −1.7 to −1.8 MPa. So the white and light gray areas
in figure 10 are not stressed. The medium gray areas could be
considered marginal, while the dark gray and black areas are
definitely water stressed.
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Figure 12. Canopy temperature (adj. TIR) vs. adjusted GRVI for field 21
on 28 July 2003.

To further verify the image map values, ArcView was used
again to get the average canopy temperature in each grid area.
The average canopy temperature was 30.88°C for the un-
stressed plots and 32.38°C for the unstressed plots, for a dif-
ference of 1.50°C, which is very close to that found by the
hand-held infrared thermometer. More validation was ob-
tained by looking at data for three flights over field 41A,
which occurred on 25 June 2002, 1 July 2002, and 28 July
2003. These results are plotted in figure 13, showing an ex-
cellent fit, with an r2 of 0.932 and an RMSE of 5.43%, when
the obvious outlier is excluded. The outlier may be the result
of some sort of edge effect, since it is in a plot at the western
edge of the field.

Since some vegetation indices (VI) are sensitive to nitro-
gen levels in the plants, the five levels of nitrogen application
were regressed on the VI for model 8 (R966 − 5.273*R676) for
field 21 on the flight of 28 July 2003, resulting in an r2 of
0.0013. Similarly, for the VI for model 11 (R773 − 0.937*R753
− 0.921*R676), the r2 was 0.0033. So nitrogen detection was
not a problem.

Vegetation index for model 8
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Figure 13. Scatter diagram for observed percent canopy cover vs. the veg-
etation index for model 8 (I = R966 − 5.273*R676) for three validation
flights over field 41A. The function shown is from the regression of the
data used in figure 4.
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Goel et al. (2003), looking at several bio-physical proper-
ties of corn, used multiple regression for band selection, as
was done here. They were concerned that collinearity or co-
dependence of the many band reflectances could be a prob-
lem, as suggested by Longley (1967) and Beaton et al. (1976).
However, with the goal of prediction rather than explanation,
collinearity  is less of a problem (Yu, 2000; Haan, 1977). Co-
Plot has a diagnostic tool that automatically checks for colli-
nearity using a procedure from Maindonald (1984). Band
selection using multiple regression was also used successful-
ly by DeTar et al. (2006). Multiple regression is a simple and
straightforward method for obtaining optimum bands, and
the resulting vegetation indices worked well over a wide vari-
ety of field and atmospheric conditions.

CONCLUSIONS
The main result this study shows is that under the condi-

tions of partial canopy in cotton over a dry soil surface, there
are several new vegetation indices (VIs) that are better than
NDVI at predicting percent canopy cover. One is a weighted
NDVI, where a coefficient of 3.9 is applied to the red term;
using this should make calibration less of a problem than with
the normal NDVI. With the goal of showing the difference in
stress in some experimental irrigation treatments, a covarian-
ce projection procedure was presented for separating the can-
opy temperature from the scene temperature. Some of the
new VIs work better than others with this procedure, among
which is a two-parameter model using the reflectance at
wavelengths of 676 and 966 nm. The canopy in the stressed
treatment of one experiment was shown to have a significant-
ly higher temperature than in an unstressed treatment. Analy-
sis of covariance showed that the vegetation index GRVI (the
difference between the reflectance of the green and red wave-
lengths) was closely related to both percent canopy cover and
water stress. Using GRVI, TIR, and new models for percent
canopy cover, it was possible to create a high-definition stress
image showing the degree of plant water stress in every part
of a cotton field.

The information presented here should be useful in select-
ing filters for multispectral cameras and for selecting wave-
bands for HSI cameras when attempting to measure degree
of ground cover. A straightforward method was presented for
separating canopy temperature from soil temperature, and a
procedure was given for producing a detailed map of canopy
temperatures so that small hot spots can be detected before
they become large hot spots.
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